Unix scripting

Jon Chernus (adapted from Ryan Minster)

Department of Human Genetics
School of Public Health
University of Pittsburgh

Document created: September 29, 2024

Jon Chernus (adapted from Ryan Minster) Unix scripting

This slide set is called unix_scripting.pdf and is located in the
“24__unix_scripting_variables” folder of our Lectures repository.

Jon Chernus (adapted from Ryan Minster) Unix scripting 2/26

Using control structures in Unix scripting
Using variables in Unix

Command substitution and grouping commands

find and xargs

Jon Chernus (adapted from Ryan Minster) Unix scripting 3/26

Grouping commands

Suppose you have a list of commands you want to execute as a
unit. There are two ways to do this.

With a subshell (where if a command in the list creates a variable,
it exists only in the subshell environment):

(1list)

Or with curly braces and a semicolon (the spaces and the final
semicolon are absolutely necessary):

{ list; }

Jon Chernus (adapted from Ryan Minster) Unix scripting 4/26

Grouping example

Suppose you want to look at the last 2 lines of a file, but you also
want to keep the header line.

The "“old way" - manually combine head and tail with redirection:

head -nl data/subjects.txt > data/last2.txt
tail -n2 data/subjects.txt >> data/last2.txt
cat data/last2.txt | column -t

fid iid sex pheno

FAM99 IND99 2 2.48
FAM100 IND100 2 2.12

Or use grouping - which doesn’t require making any files:

{ head -n1 data/subjects.txt; tail -n2 data/subjects.txt; } | column -t
fid iid sex pheno
FAM99 IND99 2 2.48
FAM100 IND100 2 2.12

Check out the “Output Grouping” section here:

https://www.linux.com/topic/desktop/all-about-curly-braces-bash /.

Jon Chernus (adapted from Ryan Minster) Unix scripting 5/26

https://www.linux.com/topic/desktop/all-about-curly-braces-bash/

Variables (and arithmetic)

Assign a variable with =

Reference a variable with $

Command-line arguments in a script are named $1, $2, $3,
and so on

@ There are also environmental variables (e.g., $7 is the exit
code of the last-run command

You can also evaluate numerical expressions inside of $(())

Jon Chernus (adapted from Ryan Minster) Unix scripting 6/26

Variables and arithmetic example

Set variable
number=10

Print it out (wrong)
echo number
number

Print it out (right)
echo $number
10

Make a new copy (wrong)
number_copy=number

Oops! Forgot the $ above!
echo $number_copy
number

Correctly copy it
number_copy=$number; echo $number_copy
10

Do arithmetic

x=$(($number + 5x$number_copy + 3))
echo $x

63

Jon Chernus (adapted from Ryan Minster)

7/26

Command substitution

Command substitution replaces a command with its output, which
helps build up more powerful commands from simpler ones.

The syntax is

$ (command)

or

“command”

Jon Chernus (adapted from Ryan Minster) Unix scripting 8/26

Command substitution examples

cd ./data

Prints 1 2345
seq 1 5

SR

Print out exactly what follows echo
echo seq 1 5
seq 1 5

Command substitution! The command is replaced by its output
echo ‘seq 1 5°¢

seq 1 5

12345

Use command substitution to make 5 folders
mkdir ‘seq 1 5°
seq 1 5

Use command substitution to delete them
rmdir ‘seq 1 5°¢
seq 1 5

Jon Chernus (adapted from Ryan Minster) 9/26

for loops

You can list the wvalues to loop over
for i in 0 1 2 hi
do
echo $i
done

[SIY

hi

You can use brace expansion
for i in {0..2}
do
echo $i
done

-

10/26

Jon Chernus (adapted from Ryan Minster)

Example: command substitution and looping

Loop overall our scripts and get their lime counts
cd ./scripts
for file in “1s
do
n_lines_temp=$(cat $file | wc -1)
echo The file $file has $n_lines_temp lines.
done

The file chromosome.sh has 29 lines.

The file double.sh has 8 lines.

The file factorial.sh has 9 lines.

The file generate_plink_filters.sh has 13 lines.
The file same_strings.sh has 8 lines.

The file search_hamlet.sh has 7 lines.

Jon Chernus (adapted from Ryan Minster) Unix scripting 11/26

if-then-else conditionals

@ Logical expressions (see next slide) need to be put inside of
brackets like this: [$x -le $y] (the spaces are required)

@ Or you can leave out the brackets and just put test in front
of the expression (e.g., test $x -le $y)

Print script
cat scripts/same_strings.sh
#!/bin/sh
a=$1 b=$2
if [$a =$b]
then
echo "the strings are the same"
else
echo "the strings are not the sames"
fi

Run it once
bash scripts/same_strings.sh water H20
"the strings are not the sames"

Run it again

bash scripts/same_strings.sh dihydrogenmonoxide dihydrogenmonoxide
"the strings are the same"

Jon Chernus (adapted from Ryan Minster) Unix scripting 12/26

Conditional statements

Common operators/expression Meaning

$EXPRESSION1 -a $EXPRESSION2 EXPRESSION1 and EXPRESSION2 are both true
$EXPRESSION1 -o $EXPRESSION2 At least one of EXPRESSION1 and EXPRESSION2 is true
! $EXPRESSION EXPRESSION is false

-n $STRING Length of STRING > 0

-z $STRING Length of STRING = 0

$STRING1 = $STRING2 STRING1 and STRING2 are the same
$STRING1 != $STRING2 STRING1 and STRING2 are not the same
$INTEGER1 -eq $INTEGER2 INTEGER1 equals INTEGER2

$INTEGER1 -gt $INTEGER2 INTEGER1 is greater than INTEGER2
$INTEGER1 -1t $INTEGER2 INTEGER1 is less than INTEGER2

-d $FILE FILE exists and is a directory

-e $FILE FILE exists

-s $FILE FILE exists and is not empty

Jon Chernus (adapted from Ryan Minster)

13/26

if-then-else example

Exit codes can also be used as conditions in if statements

@ 0 means success/ TRUE
@ anything else means fail /FALSE

grep has exit status O if there is a match, 1 otherwise
cat search_hamlet.sh
#!/bin/bash

word=$1
if grep $word ../data/hamlet.txt > /dev/null
then
echo $word occurs in Hamlet
else

echo $word does not occur in Hamlet
fi

Run it twice
bash search_hamlet.sh nunnery
nunnery occurs in Hamlet

bash search_hamlet.sh bitcoin
bitcoin does not occur in Hamlet

Jon Chernus (adapted from Ryan Minster) 14 /26

while and until loops

Basic structure of a while loop, where the commands are executed as long as condition evaluates to true.

while [condition]

do
commandl
command2
command3

done

Basic structure of an until loop, where the commands are executed as long as condition evaluates to false.

until [condition]

do
commandl
command2
command3

done

See the examples factorial.sh and double.sh in ./scripts/.

Jon Chernus (adapted from Ryan Minster)

Chaining commands with && and | |

You can run multiple commands sequentially in one line with ;

echo Hello; echo there
Hello
there

But sometimes you only want to run the second command if the first is (un)successful:

Only run the second if the first is successful

echo "hello" | grep "he" &% echo "There was a match, so this echo command got executed!"
hello

There was a match, so this echo command got executed!

Only run the second if the first is unsuccessful
echo "hello" | grep "zzz" || echo "There wasn’t match, so this echo command got executed!"
There wasn’t match, so this echo command got executed!

For a discussion, see the section “Exit Status: How to Programmatically Tell Whether Your Command Worked" in

Buffalo’s Bioinformatics Data Skills.

Jon Chernus (adapted from Ryan Minster)

case-esac conditionals

cat scripts/chromosome.sh

#!/bin/bash

Input: a valid chromosome

Output: a short description

chr=$1

case $chr in

11213) echo "Chromosome $chr is a large, metacentric autosome."

B
4]5) echo "Chromosome $chr is large, submetacentric autosome."

B

6171819110111112) echo "Chromosome $chr is a medium-sized, submetacentric autosome."

Y

13|14]15) echo "Chromosome $chr is a medium-sized, acrocentric autosome."

e

16/17118) echo "Chromosome $chr is a moderately short, (sub)metacentric autosome."

e

19]20) echo "Chromosome $chr is a short, metacentric autosome."

Y

21|22) echo "Chromosome $chr is a short, acrocentric autosome."

Y

23|"X") echo "Chromosome $chr is a medium-sized, submetacentric sex chromosome."

24|"Y") echo "Chromosome $chr is a short, acrocentric sex chromosome."

25| "XPAR") echo "Chromosome $chr refers to the pseudoautosomal region of the X chromosome."
HH

26|"MT") echo "Chromosome $chr refers to the circular mitochondrial chromosome."

HH

*) echo "$chr is not a valid chromosome."

HH

esac

Jon Chernus (adapted from Ryan Minster)

17/26

case-esac conditionals (con't.)

scripts/chromosome.sh 2
Chromosome 2 is a large, metacentric autosome.

scripts/chromosome.sh 21
Chromosome 21 is a short, acrocentric autosome.

scripts/chromosome.sh X
Chromosome X is a medium-sized, submetacentric sex chromosome.

scripts/chromosome.sh 26
Chromosome 26 refers to the circular mitochondrial chromosome.

scripts/chromosome.sh Steve
Steve is not a valid chromosome.

Jon Chernus (adapted from Ryan Minster) 18 /26

find

@ £ind searches flexibly and recursively for files

General syntax: find path expression, where expression can be quite complex

@ Use -maxdepth n (where n is an integer > 1) to say how deep to search (1=current directory,
2=subdirectories 1 level down, and so on)

Expression

Meaning

-name <pattern>
-iname <pattern>
—empty

-type <x>

-size <size>

-regex
-iregex

-print0

exprl -and expr2
exprl -or expr2
-not expr or "!"
expr
(expressions)

Match a filename to a pattern (includes bash wildcards)

Same as above, but case-insensitive

Matches empty files/directories

Matches type x (f for files, d for directories, 1 for links)

Match files at this size (shortcuts: k, M, G, T). Prepend +/- for files at least/most this
size.

Match by regex (for extended regex add -E)

Same as above, but case-insensitive

Separate results with null byte (not newline)

Logical “and”
Logical “or”
Negation

Group a set of expressions

(This table is based on Table 12-3 from Buffalo’s Bioinformatics Data Skills.)

Jon Chernus (adapted from Ryan Minster)

19/26

find examples

Find a file containing ’needle’ in a complicated file tree
find data/haystack/ -name "*needlex"

Try ignoring case

find data/haystack/ -iname "*needlex"
data/haystack//haystack6/haystack9/haystack10/haystack4/not_a_Needle.txt
data/haystack//haystack8/haystack4/haystack2/haystackl/neEdLe.txt

Try to exclude the unwanted match
find data/haystack/ -iname "*needle*" -not -iname "*not*"
data/haystack//haystack8/haystack4/haystack2/haystackl/neEdLe.txt

Where is the ’stuff’ folder?

find data/haystack -iname stuff -type d
data/haystack/haystackl/haystack3/stuff

Jon Chernus (adapted from Ryan Minster)

20/26

find -exec to run commands on search results

find path expression -exec command {} \; will

@ Find all files in the path that match the expression

@ Run command on each of them

Notes:

@ {1} is a placeholder referring to a result file (you can use it
more than once if you need to)

@ \; is a delimiter that terminates the exec commands

@ exec can only run fairly simple commands “by itself”, so more
complex commands need to be wrapped in a “child shell” with
bash -c (see https://unix.stackexchange.com/questions/
389705/ understanding-the-exec-option-of-find)

Jon Chernus (adapted from Ryan Minster) Unix scripting 21/26

https://unix.stackexchange.com/questions/389705/understanding-the-exec-option-of-find
https://unix.stackexchange.com/questions/389705/understanding-the-exec-option-of-find

find -exec example

Suppose we named some important files and want to make
backup copies in another folder

@ Put bash -c to run a child shell and then the command in
single quotes

@ After bash -c comes a placeholder argument and then {},
which will be $1 inside the child shell

find data/haystack -type f -iname "*importantx"
data/haystack/haystackl/haystack3/stuff/IMPORTANT data.csv
data/haystack/haystackl/haystackl/haystackl/haystackl/more_important_stuff.txt

find data/haystack -type f -iname "*important*" \
-exec bash -c ’name=$(basename $1); cp $1 data/important_files/backup_$name’ placeholdername {} \;

1s -1 data/important_files/
total 0

-rwxr-xr-x@ 1 jonathanchernus staff O Sep 29 14:22 backup_IMPORTANT _data.csv
-rwxr-xr-x@ 1 jonathanchernus staff O Sep 29 14:22 backup_more_important_stuff.txt

This is tricky - again, see

https://unix.stackexchange.com/questions /389705 /understanding-the-exec-option-of-find for details.

Jon Chernus (adapted from Ryan Minster) Unix scripting 22/26

https://unix.stackexchange.com/questions/389705/understanding-the-exec-option-of-find

Xargs

@ xargs takes standard in and supplies it as arguments to other commands

@ find -exec command and find | xargs command are similar (xargs has some advantages)

@ find -exec doesn't let you check the found files before running the command (with xargs you can)

@ By default, xargs passes all arguments at once, so add -n 1 if you need to pass them one at a time

@ You can also parallelize with xargs by adding -P m where m is the number of parallel processes to run at a
time

@ Note that as with exec you may need to build small scripts to supply to xargs to perform more complex

tasks

You can also use {} with xargs like with exec, but you need do add -I {} first

For example, these two commands both find and delete any .fastq files:

find . "x.fastq" rm {} \;
find . "+.fastq" | xargs rm

Jon Chernus (adapted from Ryan Minster)

23/26

find and xargs example

Suppose you want to find all .fastq files containing temp in their names and delete them after peeking at the list of

files to delete.

Make some files to find and delete
touch data/fastq/temp_{1,2}{A,B}.fastq

Find the files and save their paths
find data -name "temp*.fastq" -type f > data/files_to_delete.txt

Look at the file names
cat data/files_to_delete.txt
data/fastq/temp_1A.fastq
data/fastq/temp_1B.fastq
data/fastq/temp_2A.fastq
data/fastq/temp_2B.fastq

Now delete them with xargs
cat data/files_to_delete.txt | xargs rm

Confirm they’re gone
find data -name "tempx.fastq" -type f

Jon Chernus (adapted from Ryan Minster)

24 /26

Exercise

Write a script that
@ takes a minor allele frequency threshold as its argument

@ finds all of the PLINK binary data sets in data
(*]

writes out a text file with a PLINK command for each data set that
@ applies the given MAF threshold to the file
@ writes out a binary format data set with _filtered appended to the name

Jon Chernus (adapted from Ryan Minster)

ix scripting 25/26

Suggested solution

View solution script

cat sc

ripts/generate_plink_filters.sh

#!/bin/bash
Input: a number between O and 1 to use as MAF filter

maf=$1

Find any bed files, print a PLINK command for each
find data -type f -name "*.bed" |\

xargs
bash -

I\

c ’name=$(basename $1) ;\

newname=$ (echo $name | sed s/.bed//)_filtered ;\

echo plink --bfile $1 --maf $2 --make-bed --out $newname’ \
placeholder {} $maf \

> plink_commands.txt

Run
bash s

cat pl
plink
plink
plink
plink
plink
plink

it and look at the output
cripts/generate_plink_filters.sh 0.02

ink_commands.txt
--bfile data/a.bed --maf 0.02 --make-bed --out a_filtered
--bfile data/c.bed --maf 0.02 --make-bed --out c_filtered

--bfile data/haystack/haystack7/haystack4/f.bed --maf 0.02 --make-bed --out f_filtered

--bfile data/b.bed --maf 0.02 --make-bed --out b_filtered
--bfile data/e.bed --maf 0.02 --make-bed --out e_filtered
--bfile data/d.bed --maf 0.02 --make-bed --out d_filtered

Jon Chernus (adapted from Ryan Minster)

26 /26

