
Unix miscellenous topics

Jon Chernus (adapted from Ryan Minster)

Department of Human Genetics
School of Public Health
University of Pittsburgh

Document created: September 29, 2024

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 1 / 15

Location

This slide set is called unix_miscellaneous and is located in the
“20_unix_miscellaneous” folder of our Lectures repository.

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 2 / 15

Objectives

To learn how to parallelize functions in Unix
To learn a few other useful Unix commands

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 3 / 15

Making symbolic links with ln -s

Symbolic links are shortcuts to files or directories

Syntax: ln -s path_to_target_file_or_folder
shortcut_name

Makes a shortcut to the target file/folder in your working directory

Suppose I get tired of typing out the path to the homework data
folder, /bgfs/hugen2071-2021f/data/PLINK/

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 4 / 15

Removing symbolic links with unlink

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 5 / 15

Checking storage space with du

du recursively shows the size (in blocks) of all subdirectories in a directory

-a to show all files
-s to summarize each directory’s size
-h for human-readable output
How big is my working directory? Use du -sh .
How big are all the files and folders (nested) in my working directory? Use du -ah .

du -ah .
4.0K ./header_pagenrs.tex
8.0K ./.DS_Store
208K ./images/symbolic_link_example.png
8.0K ./images/.DS_Store
296K ./images/du_sorted_example.png
12K ./images/image-1535965655.png

128K ./images/unlink_example.png
652K ./images
4.0K ./scripts/example.R
4.0K ./scripts
4.0K ./data/letters.txt
4.0K ./data/letters_shortened.txt
4.0K ./data/letters_copy.txt
12K ./data

568K ./unix_miscellaneous.pdf
8.0K ./unix_miscellaneous.Rmd
1.2M .

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 6 / 15

Making du more useful

-B to change block size (K, M, G, T, P, etc.)
pipe to sort -h and list biggest files first

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 7 / 15

Running an R script with Rscript

First, on htc, you need to load R (and a C/C++ compiler)
module load gcc/12.2.0 r/4.3.0

If you’re using a Slurm script that calls your R script, you need to
include that module load line in the Slurm script

Run the R script with a command like Rscript --vanilla
your_R_script.R
(--vanilla avoids restoring workspaces, etc.)

Printed output from the R script goes to the Slurm log file, unless
you’ve redirected it
(e.g., Rscript your_R_script.R > my_r_script_log.txt)

Good idea: include options(echo = TRUE) at the top of your R
script so that the output will include your R commands (helps for
reading output and debugging)

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 8 / 15

Running an R script with command-line arguments

To pass variables to your R script, just put a space-separated list of
the form variable_name=value in your Rscript command. Note
that for character variables, quotes need to be escaped with \.

Example of running an R script with 3 command-line arguments:

Rscript my_r_script.R a=1 b=2 c=\"abc\"

To access the variables inside the body of the R script, you need to
do this:

Read in the arguments:
args <- (commandArgs(T))

And then assign them:
for (i in 1:length(args)) { eval(parse(text =
args[[i]])) }

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 9 / 15

Example R script (./scripts/example.R)

Make it so that commands are echoed in the output
options(echo = TRUE)

Get the command-line arguments
args <- commandArgs(T)

Notice: the values are NOT actually assigned!
We just have the "ingredients" for making them
ls()
args

Now take the text in args and execute it as commands
for (i in 1:length(args))

{
eval(parse(text = args[[i]]))

}

The variables exist now:
ls()

We can use them:
a + b
c

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 10 / 15

Running the example script
module load gcc/12.2.0 r/4.3.0 would go here if this were in a Slurm script
Rscript --vanilla ./scripts/example.R a=1 b=3.14 c=\"Hello\"

>
> # Get the command-line arguments
> args <- commandArgs(T)
>
> # Notice: the values are NOT actually assigned!
> # We just have the "ingredients" for making them
> ls()
[1] "args"
> args
[1] "a=1" "b=3.14" "c=\"Hello\""
>
> # Now take the text in args and execute it as commands
> for (i in 1:length(args))
+ {
+ eval(parse(text = args[[i]]))
+ }
>
> # The variables exist now:
> ls()
[1] "a" "args" "b" "c" "i"
>
> # We can use them:
> a + b
[1] 4.14
> c
[1] "Hello"
>

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 11 / 15

Parallel computing

Often a larger computing task can be divided into smaller
parts
If the parts are independent, they can be run in parallel,
simultaneously

E.g., each chromosome in a GWAS can be run separately and
concurrently
E.g., aligning sequencing reads to a reference sequence

Some programs offer to do this for you; sometimes you need
to implement it yourself

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 12 / 15

Implementing parallelism with job arrays

Suppose you have a Slurm script that performs a task for one
chromosome. . .
#!/bin/bash
#SBATCH --mail-type= BEGIN, END,FAIL
#SBATCH --mail-user=username@pitt.edu
#SBATCH -t 1:00:00
set -euo pipefail

awk '$6 = 2 { print $1, $2, $3, $4, $5, $6, $7, $8 }' hapmap1.ped > ~/hapmap1_new.ped

. . . but it turns out there are 22 files: hapmap1_1.ped,
hapmap1_2.ped, hapmap1_3.ped, . . . , and hapmap1_22.ped

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 13 / 15

Implementing parallelism with job arrays

Use a job array, where the array index ranges from 1 to 22. Inside
the script, you can use the variable ${SLURM_ARRAY_TASK_ID} to
perform the tasks in parallel:

#!/bin/bash
#SBATCH --mail-type= BEGIN, END,FAIL
#SBATCH --mail-user=username@pitt.edu
#SBATCH -t 5:00
#SBATCH -J newpeds
#SBATCH --output=newpeds-%A_%a.out
#SBATCH --array=1-22
set -euo pipefail

awk '$6 = 2 { print $1, $2, $3, $4, $5, $6, $7, $8 }’ \ hapmap1_${SLURM_ARRAY_TASK_ID}.ped > \
~/hapmap1_${SLURM_ARRAY_TASK_ID}_new.ped

In --output=newpeds-%A_%a.out, %A gets replaced with the job
ID nd %a gets replaced with the array index.

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 14 / 15

What if the tasks aren’t naturally numbered?

Suppose we have hapmap1_1.ped, hapmap1_2.ped,
hapmap1_3.ped, . . . , hapmap1_22.ped, and hapmap1_X.ped.
The array indices have to be integers, and X is not an integer.

The solution is to use this trick:
#!/bin/bash
...
#SBATCH --array=1-23
set -euo pipefail

For array index i, this grabs the name of the i-th file
file=`ls hapmap1_* .ped | head -n $SLURM_ARRAY_TASK_ID | tail -n 1`

Now do the task to that file
awk '$6 = 2 { print $1, $2, $3, $4, $5, $6, $7, $8 }’ \ $file > ~/${file}_new.ped

Jon Chernus (adapted from Ryan Minster) Unix miscellenous topics 15 / 15

