
Unix data manipulation

Jon Chernus (adapted from Ryan Minster)

Department of Human Genetics
School of Public Health
University of Pittsburgh

Document created: September 30, 2024

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 1 / 42

Location

This slide set is called unix_data_manipulation and is located
in the “19_unix_data_manipulation” folder of our Lectures
repository.

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 2 / 42

Objectives

To learn Unix tools like sed and awk that can be used to
manipulate data

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 3 / 42

Review: things you already know

Some commands for interacting with text/files:

Command Purpose Useful options

echo Printing stuff to stdout
cat Printing files to stdout
less and more Scrolling through files
head and tail Looking at beginning/end of files

head -nN - print first N lines
tail -nN - print last N lines
tail -n+N - Print starting at line N

wc Get line, word, and byte count of files
wc -l Print number of lines only

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 4 / 42

What you know about grep

grep pattern file prints all lines of file matching pattern.

grep -v pattern file - invert selection (get lines without
matches)
grep -i pattern file - ignore case of pattern/match

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 5 / 42

More grep options

More options for how matching is done and how results are
displayed:

Option Meaning Example command Example output

-e Use to search for multiple patterns grep -e pattern1 -e
pattern2 file

find lines matching pattern1 or
pattern2

-w Only find whole-word matches grep -w rs123 matches rs123 but not rs1234
-o Only print the matching part (not

the whole line)
echo rs1234 | grep
rs123

prints only rs123

-n Also show line numbers of matches echo rs1234 | grep -n
rs123

prints 1:rs1234

-c Only print the number of matching
lines

echo rs1234 | grep -c
rs123

prints 1

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 6 / 42

More grep options: context

Here are some options for printing matches in context by showing
surrounding lines

Option Meaning

-B N Also print N lines before matches
-A N Also print N lines after matches
-C N Also print N lines before and after matches

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 7 / 42

grep “context” examples

The whole file
cat data/snp_list.txt
rs100
rs101
rs102
rs103
rs104
rs105
rs106
rs107
rs108
rs109

Match for rs105 and preceding 1 line
grep -B 1 "rs105" data/snp_list.txt
rs104
rs105

Match for rs105 and following 2 lines
grep -A 2 "rs105" data/snp_list.txt
rs105
rs106
rs107

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 8 / 42

Using grep with multiple files

You can also search multiple files and modify the behavior of grep.

grep rs123 file file2 searches for the pattern rs123 in
both files
or you could use grep rs123 file*

Option Meaning

-r search directories recursively
-l print only the names of files containing matches

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 9 / 42

grep with multiple files examples

The two files
head -n3 data/snp_list*.txt
==> data/snp_list.txt <==
rs100
rs101
rs102

==> data/snp_list2.txt <==
rs200
rs201
rs202

Which of them contain a 5 in them? (both)
grep -l "5" data/snp_list*.txt
data/snp_list.txt
data/snp_list2.txt

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 10 / 42

regex

expression what it matches

. any single character (except newline, \n)
ˆ start of line
$ end of line
\b word boundary
\ \ is an escape character - put it in front of a special character like . to search for it
[...] any character in the brackets

More sources:

A cheat sheet for regex
http://web.mit.edu/hackl/www/lab/turkshop/slides/regex-cheatsheet.pdf
Additional info
https://www.regular-expressions.info
Regex crossword puzzles
https://regexcrossword.com/

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 11 / 42

http://web.mit.edu/hackl/www/lab/turkshop/slides/regex-cheatsheet.pdf
https://www.regular-expressions.info
https://regexcrossword.com/

More grep examples

The whole file
cat data/example.txt
bio
bioinfo
bioinformatics
computational biology

Matches for info
grep --color info data/example.txt
bioinfo
bioinformatics

Non-matches for inf
grep --color -v info data/example.txt
bio
computational biology

Whole-word matches for bio
grep --color -w bio data/example.txt
bio

Matches for u or for tics
grep --color -e u -e tics data/example.txt
bioinformatics
computational biology

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 12 / 42

More grep examples (2)

First line before a match
grep -B1 --color comp data/example.txt
bioinformatics
computational biology

First line after a match
grep -A1 --color tics data/example.txt
bioinformatics
computational biology

Show 2 lines around each match
grep -C2 --color 68 data/chroms.txt
chrom1 3214482 3216968
chrom1 3216025 3216968
chrom1 3216022 3216024
chrom1 3671349 3671498
--
chrom1 3466587 3513553
chrom1 3466587 3513553
chrom1 3466587 3466687
chrom1 3513405 3513553
chrom1 3783876 3783933

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 13 / 42

More grep examples (3)

The whole file:
cat data/example.txt
bio
bioinfo
bioinformatics
computational biology

Count the number of lines without bio
grep -v -c bio data/example.txt
0

Show line number of lines matching info
grep -n info data/example.txt
2:bioinfo
3:bioinformatics

Show matched string only:
grep -o "info" data/example.txt
info
info

Show matched string only:
grep -o "info.*" data/example.txt
info
informatics

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 14 / 42

cut

cut is for extracting columns from a data file. The two most
important flags:

-d specifies the file’s delimiter
default: \t (tab)
Use -d " " for space or -d "," for comma

-f specifies what column numbers to extract
-f 1,3-5 gets columns 1, 3, 4, and 5 (in that order)
-f 4,5,1,3,3 also gets columns 1, 3, 4, and 5 (in that order
again!)

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 15 / 42

paste

paste is for adding columns

-d specifies the delimiter (for the output)
usually used with cut, e.g., cut -f1 file.txt | paste -
file.txt

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 16 / 42

cut and paste examples

The columns are in the wrong order and are comma-separated
cat data/ids.txt
ind1,fam1
ind2,fam2
ind3,fam3
ind4,fam4

Extract the FID column to a new file
cut -d"," -f2 data/ids.txt > data/FID.txt
cat data/FID.txt
fam1
fam2
fam3
fam4

Paste it together with the IID column (looks better now)
cut -d"," -f1 data/ids.txt | paste -d"\t" data/FID.txt -
fam1 ind1
fam2 ind2
fam3 ind3
fam4 ind4

This time use a space delimiter:"
cut -d"," -f1 data/ids.txt | paste -d" " data/FID.txt - > data/corrected_ids.txt
cat data/corrected_ids.txt
fam1 ind1
fam2 ind2
fam3 ind3
fam4 ind4

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 17 / 42

cut and paste warning

Why not just do cut -f2,1 -d"," data/ids.txt? Because it
doesn’t work!

Cut refuses to re-order the columns
We get columns 1 and 2, but not in the desired order
cut -f2,1 -d"," data/ids.txt
ind1,fam1
ind2,fam2
ind3,fam3
ind4,fam4

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 18 / 42

Use hexdump -c to identify delimiters

Also handy for finding problematic and/or invisible characters in your files.

File 1
cat data/mystery_delimiter_1.txt
What is my delimiter?

File 2
cat data/mystery_delimiter_2.txt
What is my delimiter?

See file 1 is space-delimited
hexdump -c data/mystery_delimiter_1.txt
0000000 W h a t i s m y d e l i m
0000010 i t e r ? \n
0000016

See file 2 is tab-delimited
hexdump -c data/mystery_delimiter_2.txt
0000000 W h a t \t i s \t m y \t d e l i m
0000010 i t e r ? \n
0000016

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 19 / 42

Use column -t to make output more human-readable

column -t simply adds whitespace to align columns when printing
to stdout:

Hard to read
grep -v "^#" data/M.gtf | cut -f1-4 | head -n3
1 pseudogene gene 3054233
1 unprocessed_pseudogene transcript 3054233
1 unprocessed_pseudogene exon 3054233

Easy to read
grep -v "^#" data/M.gtf | cut -f1-4 | head -n3 | column -t
1 pseudogene gene 3054233
1 unprocessed_pseudogene transcript 3054233
1 unprocessed_pseudogene exon 3054233

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 20 / 42

sort basics

Top of an unsorted file
cat data/example.bed | head -n4
chr1 26 39
chr1 32 47
chr3 11 28
chr1 40 49

Now sort it
sort -s data/example.bed | head -n4
chr1 10 19
chr1 26 39
chr1 32 47
chr1 40 49

-s option means “if there are ties, keep them in the original order”
-t designates delimiter (default is whitespace)

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 21 / 42

sort by specific columns with -k

-k1,1 means “for the first sorting key, use col1.”

-k2,2 means “for the second sorting key, use col2.”

Notice that you need to tell it sort to treat numbers numerically. Otherwise it sorts numbers “alphabetically” by
their digits (so 9 comes after 10 since 9 > 1).

Sort by column 2 (doesn’t work as intended!)
sort -s -k2,2 data/example.bed
chr1 10 19
chr3 11 28
chr3 16 27
chr1 26 39
chr1 32 47
chr2 35 54
chr1 40 49
chr1 9 28

Sort by column 2 (as desired)
sort -s -k2,2n data/example.bed
chr1 9 28
chr1 10 19
chr3 11 28
chr3 16 27
chr1 26 39
chr1 32 47
chr2 35 54
chr1 40 49

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 22 / 42

sort by multiple columns and V

You use multiple -k options to sort by multiple columns. You need to include V to sort alphanumeric strings like
chr1, chr2, . . .

Sorting by chromosome and then start position (not as intended)
sort -s -k1,1 -k2,2n data/example2.bed | column -t
chr1 34 49
chr10 30 42
chr10 31 47
chr11 6 16
chr2 15 19
chr2 17 22
chr2 27 46
chr22 32 46

Sorting by chromosome and then start position (as desired)
sort -s -k1,1V -k2,2n data/example2.bed | column -t
chr1 34 49
chr2 15 19
chr2 17 22
chr2 27 46
chr10 30 42
chr10 31 47
chr11 6 16
chr22 32 46

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 23 / 42

sort in reverse order with -r

Sort by columns 1 and 2, but reverse order for 2
sort -s -k1,1V -k2,2nr data/example2.bed | column -t
chr1 34 49
chr2 27 46
chr2 17 22
chr2 15 19
chr10 31 47
chr10 30 42
chr11 6 16
chr22 32 46

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 24 / 42

Use sort -c to check if a file is already sorted how you
want

Is it already sorted by col1 and col2?
sort -c says no and tells us why:
sort -s -k1,1V -k2,2n -c data/example2.bed
sort: data/example2.bed:3: disorder: chr10 31 47

Let’s make a sorted version (example2_sorted.bed) and ask again
No output from sort -c means the file is sorted
sort -s -k1,1V -k2,2n data/example2.bed > data/example2_sorted.bed
sort -s -k1,1V -k2,2n -c data/example2_sorted.bed

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 25 / 42

uniq

uniq drops duplicate rows if they are consecutive.

There are adjacent duplicate rows
cat data/letters.txt
A
A
B
C
B
C
C
C

uniq removes the adjacent duplicate rows (non-adjacent duplicates remain)
uniq data/letters.txt
A
B
C
B
C

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 26 / 42

Pipe sort into uniq to remove all duplicate lines

sort first and pipe to uniq to remove all duplicates and end up
with unique lines.

sort | uniq leaves only the unique lines
sort data/letters.txt | uniq
A
B
C

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 27 / 42

sort uniq sort to count duplicate lines

uniq -c counts duplicate lines. You can sort again to put the most common lines first.

You can also use uniq -d to output a single copy of each duplicated line.

Counting the duplicate lines
sort data/letters.txt | uniq -c

2 A
2 B
4 C

Better yet, put the most common ones first
sort data/letters.txt | uniq -c | sort -k1,1nr

4 C
2 A
2 B

Or use uniq -d to help count the number unique duplicated rows
uniq -d prints a single copy of each duplicated row only
sort data/letters.txt | uniq -d | wc -l

3

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 28 / 42

Example

Summarizing the lines of a file:

grep -v "^#" data/M.gtf | cut -f3 | sort | uniq -c | sort -rn
36128 exon
25901 CDS
7588 UTR
4993 transcript
2299 stop_codon
2290 start_codon
2027 gene

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 29 / 42

awk

a whole programming language
works a bit like filter and select/mutate in tidyverse
rows are “records”, columns are “fields”
$0 refers to an entire records
$1, $2, $3, etc., are columns 1, 2, 3. . .
commands look like: awk 'pattern { action }' file

awk scans each record, applying the action of the record matches the pattern
the pattern selects the records
(leaving out the pattern selects all records)
the action says what to do
(leaving out the action results in a default action of printing)

-F specifies the field separator (default: whitespace)

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 30 / 42

awk example (no pattern given)

No pattern given; the action is to print each record
awk ’{ print $0 }’ data/example.bed
chr1 26 39
chr1 32 47
chr3 11 28
chr1 40 49
chr3 16 27
chr1 9 28
chr2 35 54
chr1 10 19

No pattern given; print col2, a tab, then col3
awk ’{ print $2 "\t" $3 }’ data/example.bed
26 39
32 47
11 28
40 49
16 27
9 28
35 54
10 19

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 31 / 42

awk logical operators for patterns

Pattern Meaning

a == b ais equal to b
a != b a is not equal to b
a < b a is less than b
a > b a is greater than b
a <= b a is less than or equal to b
a >= b a is greater than or equal to b
a ~ /b/ a matches the regular expression b
a ~! /b/ a doesn’t match the regular expression b
a && b a and b are both true
a || b a or b (or both) are true
!a a is not true

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 32 / 42

awk pattern examples

Print all lines where col1 matches regex chr3
awk ’$1 ~ /chr3/’ data/example.bed
chr3 11 28
chr3 16 27

Print all lines where the difference between col3 and col2 is at least 18
awk ’$3 - $2 > 18’ data/example.bed
chr1 9 28
chr2 35 54

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 33 / 42

awk examples with pattern and action

Pattern - field 1 is either chr2 or chr3
Action - print the record, a tab, and then difference between col3 and col2
awk ’$1 ~ /chr2|chr3/ { print $0 "\t" $3 - $2 }’ data/example.bed
chr3 11 28 17
chr3 16 27 11
chr2 35 54 19

Notice that including the \t delimiter is necessary
awk ’$1 ~ /chr2|chr3/ { print $1 $2 $3 $3 - $2 }’ data/example.bed
chr3112817
chr3162711
chr2355419

Or we can use a comma, which awk interprets as a space delimiter
awk ’$1 ~ /chr2|chr3/ { print $1,$2,$3,$3 - $2 }’ data/example.bed
chr3 11 28 17
chr3 16 27 11
chr2 35 54 19

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 34 / 42

Counting columns with awk

Use awk '{print NF; exit}' to get the number of columns. (This
command assumes every row has the same number of columns!)

Obviously there are 3 columns
head -n3 data/Mus_musculus.GRCm38.75_chr1.bed
1 3054233 3054733
1 3054233 3054733
1 3054233 3054733

Let’s have awk check for us
awk ’{print NF; exit}’ data/Mus_musculus.GRCm38.75_chr1.bed
3

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 35 / 42

sed for substitution
stream editor

good for substitution (default: only the first occurrence per line)
sed commands look like: sed 's/pattern/replacement/options' file
options include i (ignore case) and g (replace all occurrences per line)

The original file
head -n3 data/chroms2.txt
chrom1 POS3214482 POS3216968
chrom1 POS3216025 POS3216968
chrom1 POS3216022 POS3216024

Replace chrom with chr
sed ’s/chrom/chr/’ data/chroms2.txt | head -n3
chr1 POS3214482 POS3216968
chr1 POS3216025 POS3216968
chr1 POS3216022 POS3216024

Also delete POS
sed ’s/chrom/chr/’ data/chroms2.txt | sed ’s/POS//’ | head -n3
chr1 3214482 POS3216968
chr1 3216025 POS3216968
chr1 3216022 POS3216024

Oops, delete POS globally
sed ’s/chrom/chr/’ data/chroms2.txt | sed ’s/POS//g’ | head -n3
chr1 3214482 3216968
chr1 3216025 3216968
chr1 3216022 3216024

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 36 / 42

sed for deletion

sed '/pattern/d' file deletes any lines matching the
pattern
sed 'Nd' file deletes line N
sed streams the results by default - it doesn’t change the
source file
sed has options for editing files in place (over-writing the
original)

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 37 / 42

tr for “translating” characters
To use tr to replace a with b in a file, do either:

cat file | tr 'a' 'b' or

tr 'a' 'b' < file (redirect standard in; that’s just how it is)

Example: replace D with R:

echo "DNA" | tr ’D’ ’R’
RNA

You can translate multiple characters simultaneously:

Notice the results are very different here!
echo ’abc’ | tr ’a’ ’c’ | tr ’b’ ’d’ | tr ’c’ ’e’
ede
echo ’abc’ | tr ’abc’ ’cde’
cde

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 38 / 42

tr -d for deleting characters

The file as-is
cat data/letters.txt
A
A
B
C
B
C
C
C

Delete newline characters
cat data/letters.txt | tr -d "\n"
AABCBCCCprintf "\n"

Delete C, too
cat data/letters.txt | tr -d "\nC"
AABB

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 39 / 42

tr -s for collapsing repeated characters

Remove extra spaces, e.g.

echo ’Five spaces between each word?’
Five spaces between each word?

echo ’Five spaces between each word?’ | tr -s ’ ’
Five spaces between each word?

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 40 / 42

join

You can merge data sets with join.

Both files have to be sorted first
Syntax: join -1 file1key -2 file2key file1 file2
file1key and file2key are the column numbers to be used
as the merging key
Default: inner join
You aren’t expected to use join in this course

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 41 / 42

diff -s to determine if two files are identical

This pair of files are obviously the same
cp data/letters.txt data/letters_copy.txt
diff -s data/letters.txt data/letters_copy.txt
Files data/letters.txt and data/letters_copy.txt are identical

This pair of files is obviously different
tail -n+3 data/letters.txt > data/letters_shortened.txt
diff -s data/letters.txt data/letters_shortened.txt
1,2d0
< A
< A
Files data/letters.txt and data/letters_shortened.txt are identical

Note that diff -s has nonzero exit status when there is a difference! (So it can cause scripts to fail if you
have set -euo pipefail.)
Google diff if you need to understand the output

Jon Chernus (adapted from Ryan Minster) Unix data manipulation 42 / 42

