
UNIX basics

Jon Chernus (adapted from Ryan Minster)

Department of Human Genetics
School of Public Health
University of Pittsburgh

Document created: September 23, 2024

Jon Chernus (adapted from Ryan Minster) UNIX basics 1 / 33

Location

This slide set is called unix_basics.pdf and is located in the
“15_unix_basics” folder of our Lectures repository.

Jon Chernus (adapted from Ryan Minster) UNIX basics 2 / 33

Objectives

To learn basic UNIX commands
To learn how to interact with running processes

Most of the content in this slide set is essential. You will need to
become proficient with it to proceed in the course and to work at
the command line in general.

Most of this is a review of what you read in the assigned Active
Reading.

Jon Chernus (adapted from Ryan Minster) UNIX basics 3 / 33

Warnings

rm and rmdir are forever
overwriting is forever (so be careful with cp, mv, etc.)
a single whitespace matters a lot

rm -rf a*
recursively delete any file/folder starting with an a

rm -rf a *
recursively delete any file/folder starting with an a
then do the same for everything (because * matches anything)

these are all different, so be careful when copy-pasting
“,”, and ” (straight vs. curly double-quotes)
‘,’,’, and ‘ (straight vs. curly single-quotes vs. back-tick)
-, –, and — (hyphen, en dash, em dash)

don’t use spaces and special characters in file names
don’t work on the login node of htc (use srun -M teach -A
hugen2071-2024f --pty bash)

Jon Chernus (adapted from Ryan Minster) UNIX basics 4 / 33

What is a shell?

User interface for interacting with the UNIX operating system
A program that accepts commands that are in turn other,
more basic programs/utilities
Important for scripting, making pipelines, calling other
programs, organizing files, managing resource-intensive
processes/jobs
There are lots of versions
We use bash here

Jon Chernus (adapted from Ryan Minster) UNIX basics 5 / 33

The bash shell

Very common
Supports history (use the up arrow to save time!)
Supports autocompletion (use tab to save time!)
Supports wildcards (more on that later)
Comments start with #

Jon Chernus (adapted from Ryan Minster) UNIX basics 6 / 33

Files are organized hierarchically

Figure 1: Example of a file tree
(https://swcarpentry.github.io/shell-novice/02-filedir.html)

You can designate a file/folder with

an absolute path (starting at the top of the file tree, root, /)
e.g., /Users/thing/backup/2013-01-08/

a relative file path (starting at your working directory, .)
e.g., ../2013-01-08/ if you’re currently in
/Users/thing/backup/2012-12-01/

Jon Chernus (adapted from Ryan Minster) UNIX basics 7 / 33

https://swcarpentry.github.io/shell-novice/02-filedir.html

Shortcuts for navigating

Shortcut Meaning

~ home directory
. current/working directory
.. parent directory (up one from where you are now)
- your previous working directory
/

By itself: the root directory (top of the file
tree)
Between names of folders: just a divider

Jon Chernus (adapted from Ryan Minster) UNIX basics 8 / 33

Commands for navigating

Command Meaning Syntax
Useful
options

pwd print working directory pwd
cd change directory cd

directory
ls list the files in a

directory
ls
directory

-lahFGpt

Jon Chernus (adapted from Ryan Minster) UNIX basics 9 / 33

What does the output of ls mean?

File permissions

Link count

Owner

Owner group

File size

Date last modified

File name

Figure 2: Columns of ls output

Jon Chernus (adapted from Ryan Minster) UNIX basics 10 / 33

Commands for manipulating files

Command Syntax Meaning

cp
cp file1 file2
... file5 dir

cp file1 file2

Copy one or more files
into the folder
Copy file1 as file2

mv
mv file1 file2
... file5 dir

mv file1 file2

Move one or more files
into the folder
Rename file1 as file2

rm -i rm file1 file2 ...
file5

Permanently delete one or
more files

mkdir mkdir dir1 dir2
... dir5

Create one or more folders

rmdir rmdir dir1 dir2
... dir5

Permanently delete one or
more empty folders

Jon Chernus (adapted from Ryan Minster) UNIX basics 11 / 33

Who can do what with a file?

Figure 3: How to read file permissions
(https://teaching.healthtech.dtu.dk/unix/index.php/File_permissions)

Permission code Meaning

r read file/list directory
w edit file/make files in directory
x execute file/cd into directory

Jon Chernus (adapted from Ryan Minster) UNIX basics 12 / 33

https://teaching.healthtech.dtu.dk/unix/index.php/File_permissions

Use chmod to control file permissions

Example
command Meaning

chmod -v a=rwx
file

Give everyone (all) permission to read, write, and execute

chmod -v ug=rw
file

Give yourself (the user/owner, u) and your group permission to read and write only

chmod -v o=r file Give others read-only permission

chmod -v a+x file Add (+) execute permission for all (without changing the r or w permissions)

-v means “verbose” and prints a useful message.

Jon Chernus (adapted from Ryan Minster) UNIX basics 13 / 33

Commands for looking at contents of files

CommandMeaning Syntax Useful options

head show first lines of file head file -n (first n lines)

tail show last lines of file tail file -n (last n lines) or -n+ (start
at line n)

more read through file more file (Navigate with spacebar and q)

less read through file less file (See documentation)

wc get count of words, lines, and bytes wc file -l (get only word count)

Jon Chernus (adapted from Ryan Minster) UNIX basics 14 / 33

More important commands: cat, echo, grep

CommandUse Example Meaning

cat Prints contents of a file cat file1.txt
file2.txt

Print one or more files

echo Prints out whatever follows echo "Hi there" Print “Hi there”

grep Search for pattern in file
-i case-insensitive

-v invert (find
non-matches)
--color highlight
matches

grep gene file.txt Print lines of file.txt containing
“gene”

Jon Chernus (adapted from Ryan Minster) UNIX basics 15 / 33

Use wildcards (?, *, and [...]) for pattern-matching

These are powerful - so be careful with them!

Wildcard Matches
Example
pattern Example matches

* Anything (zero or more
characters)

*.txt Any .txt file

? Any single character chr1?.txt chr11.txt, chr12.txt, chr1a.txt (but not
chr1.txt, chr111.txt, chr.txt)

[...] Anything in the set of characters
in the brackets

chr[0-9][0-9].txtchrMN.txt where M and N are any integers
0-9

chr[XY].txt chrX.txt or chrY.txt

Jon Chernus (adapted from Ryan Minster) UNIX basics 16 / 33

cat, echo, grep, wildcard examples

echo example
echo "Echoing a comment to the screen. Then using a cat command!"
Echoing a comment to the screen. Then using a cat command!

cat example
print out some short text files
echo "Below are the contents of my chr*.txt files"
Below are the contents of my chr*.txt files
cat data/chr*.txt
chr1:36926582
chr1:66782904
chr1:77840389
chr2:60318540
chr2:85739014

grep example
echo "Here are all the lines of chr1.txt without a 3"
Here are all the lines of chr1.txt without a 3
grep -v 3 data/chr1.txt
chr1:66782904

Jon Chernus (adapted from Ryan Minster) UNIX basics 17 / 33

Using grep with regular expressions

Some more advanced pattern-matching options:

Regular
expres-
sion Use Example Meaning

ˆ Matches beginning of line grep "ˆchr1"
file.txt

Print lines of file that start with “chr1”
(this would also match “chr12”, etc.)

$ Matches end of line grep "0$"
file.txt

Print lines of file that end with the
digit 0

[...] Matches lines containing
characters listed inside the
brackets

grep
"[ACGT]"
file.txt

Print lines of file that contain A, C, G
or T

[ˆ...] Matches lines containing
characters not listed inside the
brackets

grep
"[ˆACGT]"
file.txt

Print any lines of the file containing
characters other than A, C, G, or T

Jon Chernus (adapted from Ryan Minster) UNIX basics 18 / 33

grep examples with regular expressions

Look at top of the file
head -n3 data3/tb1.fasta
>gi|385663969|gb|JQ900508.1| Zea mays subsp. mexicana isolate IS9 teosinte branched 1 (tb1) gene, complete cds
GCCAGGACCTAGAGAGGGGAGCGTGGAGAGGGCATCAGGGGGCCTTGGAGTCCCATCAGTAAAGCACATG
TTTCCTTTCTGTGATTCCTCAAGCCCCATGGACTTACCGCTTTACCAACAACTGCAGCTAAGCCCGTCTT

Pull out just the header
grep "^>" data3/tb1.fasta
>gi|385663969|gb|JQ900508.1| Zea mays subsp. mexicana isolate IS9 teosinte branched 1 (tb1) gene, complete cds

Pull out any line containing a non-ATGC character
grep --color -i "[^ACGT]" data3/tb1.fasta
>gi|385663969|gb|JQ900508.1| Zea mays subsp. mexicana isolate IS9 teosinte branched 1 (tb1) gene, complete cds
CCCCAAAGACGGACCAATCCAGCAGCTTCTACTGCTAYCCATGCTCCCCTCCCTTCGCCGCCGCCGACGC

Jon Chernus (adapted from Ryan Minster) UNIX basics 19 / 33

Processes

A command you run is run as a “process” and assigned a
process ID number (pid)
By default a process runs in the foreground (you wait for it
to finish before starting another)
To keep interacting with the terminal, you can run a process
in (or move it to) the background

Run it in the background by putting & after the command (this
prints job id and pid)
To move a process from foreground to background

ctrl + z suspends the process
then bg to restart it in the background

Use jobs to see what jobs are running in the background
(shows the commands)
Use ps to see process status (including pid)
Terminating a process

ctrl + z for a foreground process
kill followed by the pid for a background process

Jon Chernus (adapted from Ryan Minster) UNIX basics 20 / 33

Processes - example

The sleep command suspends operations for a specified time. Here it runs for 10 seconds in the foreground:

Here it runs in the background, getting a job id (1) in addition to a process id (78357). Then a message when it
finishes 10 seconds later:

Or we can start in the foreground and then background it:

Jon Chernus (adapted from Ryan Minster) UNIX basics 21 / 33

Processes - example (continued)

To see what jobs are running in the background, use jobs. You can foreground a job with fg followed by its job id.
(If you don’t specify a job id, fg operates on the job with the +; and the job with - would be next after the + job
finishes.)

To check the status of all processes, use ps:

To terminate a process, use kill:

Jon Chernus (adapted from Ryan Minster) UNIX basics 22 / 33

Exit status

When it ends, a process returns an exit status stored in the
variable $?

Exit code 0 means no error
Any other exit code means error/failure for some reason

Jon Chernus (adapted from Ryan Minster) UNIX basics 23 / 33

Exit status example

cat data/chr1.txt
chr1:36926582
chr1:66782904
chr1:77840389

echo $?
0

ehco "Hi"
bash: line 6: ehco: command not found

echo $?
127

grep "369" data/chr1.txt
chr1:36926582

echo $?
0

grep "CHR" data/chr1.txt

echo $?
1

grep "CHR" data/chr1.txt | cat

echo $?
0

Jon Chernus (adapted from Ryan Minster) UNIX basics 24 / 33

The computing cluster and htc

htc (high throughout computing) is the computing cluster
we’ll use for this class
the CRC (Center for Research Computing) administers it
don’t work on the login node (always ‘srun --pty bash‘ when
you first log in via the terminal)
you can also submit larger jobs using the workload manager,
Slurm (we’ll cover that later)

Jon Chernus (adapted from Ryan Minster) UNIX basics 25 / 33

Logging on to htc

First, log into the VPN with GlobalProtect.

There are two ways to log on to the cluster

Via the web: ondemand.htc.crc.pitt.edu
Via a terminal window

ssh <your_user_name>@htc.crc.pitt.edu

For details, see
https://crc.pitt.edu/getting-started/accessing-cluster.

Next, always start an interactive job: srun --pty bash .

Jon Chernus (adapted from Ryan Minster) UNIX basics 26 / 33

ondemand.htc.crc.pitt.edu
https://crc.pitt.edu/getting-started/accessing-cluster

Don’t work on the login node!

When you first ssh onto the cluster, you’re on the login
node, which is only for logging into and not for working
Always do srun --pty bash to start an “interactive job”
when you log in via the terminal (default: 1 hour)
If you work on the login node

you will slow down the cluster and inconvenience the many
people using it
you will get yourself and me in trouble

Jon Chernus (adapted from Ryan Minster) UNIX basics 27 / 33

Moving files between your computer and htc

Two main options

the in-browser interface at ondemand.htc.crc.pitt.edu in the
Files menu (recommended)
a free FTP program like Cyberduck (instructions:
https://crc.pitt.edu/managingdata)

You can also use the more cumbersome scp command (again, see
https://crc.pitt.edu/managingdata).

Jon Chernus (adapted from Ryan Minster) UNIX basics 28 / 33

ondemand.htc.crc.pitt.edu
https://cyberduck.io
https://crc.pitt.edu/managingdata
https://crc.pitt.edu/managingdata

Editing text files with nano

nano is a simple text command-line text editor we’ll use
others include vim and pico

In an interactive job on htc, first load nano with module
load nano

Entering nano will open the editor
Just nano opens a new blank file
nano fileame opens a new/existing file (called filename)

Along the bottom are commands, where ˆX means CTRL + x
and so on
To exit: ˆX, then type y to save, and hit RETURN

Jon Chernus (adapted from Ryan Minster) UNIX basics 29 / 33

Use man to learn how commands work
Suppose you want to quickly see how a command (e.g., ls) works.
You can do a web search, use an LLM like ChatGPT, or consult
the man page. I entered man ls and paged down with spacebar:

Figure 4: Part of the man page for ls

total 1736
drwxrwxrwx 4 jonathanchernus staff 128B Oct 17 2023 data
drwxr-xr-x 3 jonathanchernus staff 96B Oct 17 2023 data2
drwxr-xr-x 3 jonathanchernus staff 96B Oct 17 2023 data3
drwxr-xr-x 4 jonathanchernus staff 128B Oct 17 2023 data4
drwxr-xr-x 15 jonathanchernus staff 480B Oct 17 2023 figures
-rw-r--r--@ 1 jonathanchernus staff 357B Dec 9 2022 header_pagenrs.tex
drwxr-xr-x@ 5 jonathanchernus staff 160B Sep 5 2023 images
-rw-r--r--@ 1 jonathanchernus staff 25K Sep 23 11:09 unix_basics.Rmd
-rw-r--r--@ 1 jonathanchernus staff 803K Sep 23 11:09 unix_basics.pdf

Jon Chernus (adapted from Ryan Minster) UNIX basics 30 / 33

Using git at the command line - make a personal access
token first

In order to clone your repository (and push changes) to your home
directory on htc, you will need to create a personal access token.

log in to your GitHub account
click on your profile picture (top right) and select Settings
click Developer Settings at the bottom left and then Personal access
tokens - Tokens (classic)
click Generate new token - Generate new token (classic)
enter something like hugen2071_htc_token for the Note
set the expiration date as 90 days
under Select scopes click the repo box to automatically check the 5
boxes below it
now click the Generate token button
copy the token and paste/store it somewhere safe
you won’t be able to look it up again without resetting it

Jon Chernus (adapted from Ryan Minster) UNIX basics 31 / 33

https://github.com

Using git at the command line - cloning a repository

You only need to this step once:

copy the ssh link for the repository you want to clone
cd to the directory you want
enter git clone link (paste your link in place of the word
link)
provide your username and personal access token at the
prompt

Jon Chernus (adapted from Ryan Minster) UNIX basics 32 / 33

Using git at the command line - adding, committing,
pushing

First, if you create or change any files, enter git add -A
make sure all of the changes are staged for the next commit
(otherwise git won’t keep track of the changes)
or do git add file1 file2 if there are files you don’t want
under git control
do this every time before you commit/push

Second, commit
enter git commit -m "message" (where “message” is a
short, useful description of what changes you’ve made
do this every time before you push

Finally, push
enter git push
this ensures your commit is saved remotely on GitHub

Jon Chernus (adapted from Ryan Minster) UNIX basics 33 / 33

