
R basics

Daniel E. Weeks

Department of Human Genetics
School of Public Health
University of Pittsburgh

Daniel E. Weeks R basics 1 / 97

Location

This slide set is in the Lectures repository in the 03_R_basics folder.

Daniel E. Weeks R basics 2 / 97

Acknowledgment

Many of these slides were originally created by Stephen Eglen,
and are used by permission.
The original slide set was published as a supplement to Elgen
(2009) with these permissions: “This is an open-access article
distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the
original author and source are credited.”
Reference: Eglen SJ. A quick guide to teaching R programming
to computational biology students. PLoS Comput Biol (2009)
vol. 5 (8) pp. e1000482
http://www.ploscompbiol.org/doi/pcbi.1000482

Daniel E. Weeks R basics 3 / 97

http://www.ploscompbiol.org/doi/pcbi.1000482

What is R?

Computing environment, similar to matlab.
Very popular in many areas of statistics, computational biology.
“Programming with data” (Chambers)
Approach:

command-line for one-liners.
write scripts/functions for larger work (edit/run cycle).

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 4 / 97

History

S language came from Bell Labs (Becker, Chambers and
Wilks). Commercial version S-plus (1988).
R emerged as a combination of S and Scheme: Ross Ihaka and
Robert
Gentleman (NZ).
1993: first announcement.
1995: 0.60 release, now under GPL.
Major release typically Apr/Oct with fixes between.

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 5 / 97

Strengths of R

GPL’d, available on many platforms.
Excellent development team with Apr/Oct release cycle.
Source always available to examine/edit.
Fast for vectorized calculations.
Foreign-language interface (C/Fortran) when speed crucial, or
for interfacing with existing code.
Good collection of numerical/statistical routines.
Comprehensive R Archive Network (CRAN) - lots of R
packages.
On-line doc, with examples.
High-quality graphics (pdf, postscript, quartz, x11, bitmaps).
Often used just for plotting . . .

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 6 / 97

Graphics example

Jean YH Yang; gpQuality
http://bioinf.wehi.edu.au/marray/ibc2004/lect1b-quality.pdf
Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 7 / 97

http://bioinf.wehi.edu.au/marray/ibc2004/lect1b-quality.pdf

Weaknesses of R

Loops are slow.
Learn how to vectorize solutions or use apply family of
functions.

No compiler yet, and unlikely to happen due to nature of
language.

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 8 / 97

Ignore your fear

Patrick Burns found that “the biggest stumbling block in
learning R was thinking that R was hard”.
Hint number one when beginning R:

Ignore your fear.
http://www.burns-
stat.com/pages/Tutor/hints_R_begin.html

Daniel E. Weeks R basics 9 / 97

http://www.burns-stat.com/pages/Tutor/hints_R_begin.html
http://www.burns-stat.com/pages/Tutor/hints_R_begin.html

Using R

Start-up: type ‘R’ at command line.
Type commands interactively, and get results.
Type commands into a file; source(‘myfile.R’); edit file . . .
All platforms have a command-line interface
Many external editors have support for R, including Emacs
(http://ess.r-project.org).
RStudio is now commonly used.

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 10 / 97

http://ess.r-project.org

Startup

At startup, R loads a number of packages, so the commands in
those packages are available to you to use.

options(width=60)
search()

[1] ".GlobalEnv" "package:stats"
[3] "package:graphics" "package:grDevices"
[5] "package:utils" "package:datasets"
[7] "package:methods" "Autoloads"
[9] "package:base"

To quit R, use the command ‘q()’.

Daniel E. Weeks R basics 11 / 97

Blank Screen Syndrome

So you have successfully started R on your machine. Here’s
where the trouble sometimes starts – there’s a big, huge
prompt daring you to do something.
You don’t need a mirror to know that you have that
deer-in-the-headlights look on your face.
The solution is,

first, to have something to do,
and then to break that task into steps.

By Patrick Burns - see http://www.burns-stat.com/pages/Tutor/hints_R_begin.html

Daniel E. Weeks R basics 12 / 97

http://www.burns-stat.com/pages/Tutor/hints_R_begin.html

I miss my menus

You may be wondering why you should learn a language rather
than have a package that just gives you menus.
Do you carry a picture card around with you to communicate
with other people?

Language is much more convenient than having a small number
of choices to point at. Pointing at pictures on a menu is
marginally workable at restaurants in foreign countries. Much
beyond that it becomes useless.

The computing world is not much different.
While learning a language requires expending extra effort at
first, ultimately it will most likely save a lot of effort.

By Patrick Burns - see
http://www.burns-stat.com/pages/Tutor/more_R_blankscreen.html

Daniel E. Weeks R basics 13 / 97

http://www.burns-stat.com/pages/Tutor/more_R_blankscreen.html

Write down the steps

If you are not sure how to proceed with a task, write down the
steps you need to do in order to achieve the task.
You may have to break some steps into substeps. And substeps
into subsubsteps.
Breaking a large task into bite-size steps is really all that
programming is.

Ultimately each step needs to be a command that the language
understands.

By Patrick Burns - see
http://www.burns-stat.com/pages/Tutor/more_R_blankscreen.html

Daniel E. Weeks R basics 14 / 97

http://www.burns-stat.com/pages/Tutor/more_R_blankscreen.html

Do the steps

Once you have the task broken down into steps, do the easy
steps first.
This violates my real-life motto of saving the best until last,
but there are reasons for doing the easy parts first:

your brain will work on solving the hard steps while you do the
easy steps. The hard steps may not be inherently hard, you
might effortlessly twig on the solution given some time.
finishing a step might show you that the whole enterprise is
misdirected
doing easy steps first might save you a lot of time in this regard.

By Patrick Burns - see
http://www.burns-stat.com/pages/Tutor/more_R_blankscreen.html

Daniel E. Weeks R basics 15 / 97

http://www.burns-stat.com/pages/Tutor/more_R_blankscreen.html

Make mistakes on purpose

Make mistakes using R. That is, experiment. That’s what the
pros do.
Two benefits of experimenting are:

You learn how things work (often reasonably efficiently).
You learn to maintain your equilibrium when something goes
wrong.

By Patrick Burns - see http://www.burns-stat.com/pages/Tutor/hints_R_begin.html

Daniel E. Weeks R basics 16 / 97

http://www.burns-stat.com/pages/Tutor/hints_R_begin.html

Interacting with R

Can use up/down arrow keys to go through command history.
Within a command, use left/right arrow keys to edit.

History can be saved over sessions
?history

Multiple commands can be put onto one line, using “;” as
separator
between lines, e.g.

x<-10; y<-3; a <- 5.
TAB can do object/file completion.

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 17 / 97

Objects and Functions

R manipulates objects.
Each object has a name and a type (vector, matrix, list, . . .)
Name of an object: letters (upper/lower case are distinct),
digits, period. Start with a letter.
Objects set by way of assignment.

Use the assignment operator ‘<-’ rather than = wherever
possible.
Does ‘i = i+1’ make sense?
HINT: Option + minus or Alt + minus types <- in one
keystroke within RStudio within an R chunk.

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 18 / 97

My first R session

options(width=50) # Narrow output width for this slide.
x <- rnorm(n=45, mean=4)
round(x,2)

[1] 3.60 4.63 6.30 4.39 1.75 3.85 1.86 5.14 4.10
[10] 3.60 5.50 4.65 2.82 5.86 3.24 3.80 4.33 4.79
[19] 3.38 5.21 2.05 3.48 4.01 4.19 5.61 5.63 5.08
[28] 3.10 4.15 3.11 5.63 3.87 4.42 3.48 2.85 3.62
[37] 2.52 4.15 3.23 5.93 2.78 2.10 2.84 3.19 4.49

Daniel E. Weeks R basics 19 / 97

My first R session

mean(x)

[1] 3.9626
range(x)

[1] 1.745464 6.300039
summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.745 3.186 3.874 3.963 4.651 6.300

Daniel E. Weeks R basics 20 / 97

My first R session
hist(x)

Histogram of x

x

F
re

qu
en

cy

2 3 4 5 6

0
2

4
6

8

Daniel E. Weeks R basics 21 / 97

My first R session
hist(x, main='My first plot')

My first plot

x

F
re

qu
en

cy

2 3 4 5 6

0
2

4
6

8

Daniel E. Weeks R basics 22 / 97

Creating an object

To create an R object, we use the assignment operator <-
Here we create an R object named x that contains the single
value 5:

x <- 5 # Assign 5 to x
x # Print the object by typing its name

[1] 5

Daniel E. Weeks R basics 23 / 97

Object names

Use understandable names
Case sensitive
Avoid using reserved names and function names

TRUE, function, c, T, df, data, etc.
Use underscores (my_data) instead of dots (my.data)
Use nouns for objects, verbs for functions.
See these help pages for more information

?make.names
?Reserved

Daniel E. Weeks R basics 24 / 97

Functions

Built-in or added via R packages or write your own.
Input is specified via the arguments

Arguments may have default values.
Often return/output a result and/or an R object
Get help for a function by typing ? followed by the function’s
name

?sqrt

x <- 2
sqrt(2) # x is the input argument.

[1] 1.414214

Daniel E. Weeks R basics 25 / 97

Functions

x <- sqrt(2)
x

[1] 1.414214
round(x) # Default is to round to 0 digits

[1] 1
args(round) # What are the arguments of round()?

function (x, digits = 0)
NULL
round(x, digits = 3) # Use 'digits' argument

[1] 1.414

Daniel E. Weeks R basics 26 / 97

Objects and functions

Use [] for accessing elements of R objects.
Use () for calling functions.

age <- c(15, 19, 30)
age[2] ## [] for accessing elements.

[1] 19
length(age) ## () for calling functions.

[1] 3

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 27 / 97

Question

What does ‘a <- 9; a < - 9’ do?

Daniel E. Weeks R basics 28 / 97

Answer

a <- 9
a

[1] 9
a < - 9

[1] FALSE

Daniel E. Weeks R basics 29 / 97

Assignment
Note also that assignments return values:

y <- 1 + (x <- 9)
a <- b <- 0
y

[1] 10
x

[1] 9
a

[1] 0
b

[1] 0

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 30 / 97

Data types in R

integer
character
numeric
logical

TRUE, FALSE
date

Date, POSIXct, difftime
complex

complex numbers
raw

raw bytes

Daniel E. Weeks R basics 31 / 97

Special values: NA, NaN, Inf

NA: ‘not applicable’, the missing value code
Most operations that involve an NA return an NA.

NaN: ‘not a number’, created by invalid mathematical
operations.
Inf: infinity

max(c(1,2,NA))

[1] NA
max(c(1,2,NA), na.rm = TRUE)

[1] 2
sqrt(-1)

Warning in sqrt(-1): NaNs produced

[1] NaN

Daniel E. Weeks R basics 32 / 97

Data structures in R

Homogeneous - contains all the same type of data
vectors (1 dimension)
matrices (2 dimensions)
arrays (n dimensions)
factors

Heterogeneous - can contain mixtures of data
lists
data frame

tibbles

Daniel E. Weeks R basics 33 / 97

Vectors

Vectors are a fundamental object for R.
Scalars are treated as vector of length 1.
Construct vectors with the c() (combine) function.

y <- c(10, 20, 40)
y[2] # Second element of the y vector

[1] 20
length(y)

[1] 3
x <- 5
length(x)

[1] 1

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 34 / 97

Vectors
Some operations work element by element, others on the whole
vector, compare:
y <- c(20, 49, 16, 60, 100)
min(y)

[1] 16
range(y)

[1] 16 100
sqrt(y)

[1] 4.472136 7.000000 4.000000 7.745967
[5] 10.000000
log(y)

[1] 2.995732 3.891820 2.772589 4.094345 4.605170

Modified from original slide by Eglen (2009).Daniel E. Weeks R basics 35 / 97

Generating vectors
Many short hand methods for regular sequences; c() for irregular.
x <- seq(from=1, to=9, by=2)
x

[1] 1 3 5 7 9
y <- seq(from=2, by=7, length=3)
y

[1] 2 9 16
z <- 4:8
z

[1] 4 5 6 7 8
a <- seq.int(5) ## fast for integers
a

[1] 1 2 3 4 5

Modified from original slide by Eglen (2009).
Daniel E. Weeks R basics 36 / 97

Generating vectors
b <- c(3, 9, 2)
b

[1] 3 9 2
d <- c(a, 10, b)
d

[1] 1 2 3 4 5 10 3 9 2
e <- rep(c(1,2), 3)
e

[1] 1 2 1 2 1 2
f <- integer(7)
f

[1] 0 0 0 0 0 0 0

Modified from original slide by Eglen (2009).
Daniel E. Weeks R basics 37 / 97

Accessing and setting elements
x <- seq(from=100, by=1, length=8)
x

[1] 100 101 102 103 104 105 106 107
x[3] ## just element 3.

[1] 102
x[c(2,4)] ## element 2 and 4

[1] 101 103
x[1:5]

[1] 100 101 102 103 104
bad <- 1:4
x[-bad] ## negative indicies exclude elements

[1] 104 105 106 107

Modified from original slide by Eglen (2009).
Daniel E. Weeks R basics 38 / 97

Accessing and setting elements

Can also provide a logical vector of same length as vector (logical
values explained later).
x <- c(5, 2, 9, 4)
v <- c(T, F, F, T)
x[v]

[1] 5 4

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 39 / 97

Accessing and setting elements
Elements can be set in several ways
x <- rep(0,10)
x

[1] 0 0 0 0 0 0 0 0 0 0
x[1:3] <- 2
x

[1] 2 2 2 0 0 0 0 0 0 0
x[5:6] <- c(-5, NA)
x

[1] 2 2 2 0 -5 NA 0 0 0 0
x[7:10] <- c(1,9) ## recycling.
x

[1] 2 2 2 0 -5 NA 1 9 1 9
Daniel E. Weeks R basics 40 / 97

Recycling rule
Recycling is convenient, but dangerous; when vectors are of different
lengths, the shorter one is often recycled to make a vector of the
same length.
a <- c(1,5) + 2
a

[1] 3 7
x <- c(1,2); y <- c(5,3,9,2)
x

[1] 1 2
y

[1] 5 3 9 2
x + y

[1] 6 5 10 4

Modified from original slide by Eglen (2009).
Daniel E. Weeks R basics 41 / 97

Recycling rule
x

[1] 1 2
y

[1] 5 3 9 2
c(y,1)

[1] 5 3 9 2 1
x + c(y,1) ## odd recycling, warning.

Warning in x + c(y, 1): longer object length is
not a multiple of shorter object length

[1] 6 5 10 4 2

Be aware of the recycling rule; an easy place to make subtle
mistakes.

Modified from original slide by Eglen (2009).Daniel E. Weeks R basics 42 / 97

Naming indexes of a vector
joe <- c(24, 1.70)
joe

[1] 24.0 1.7
names(joe)

NULL
names(joe) <- c('age', 'height')
joe

age height
24.0 1.7
joe['height']

height
1.7

Modified from original slide by Eglen (2009).
Daniel E. Weeks R basics 43 / 97

Naming indexes of a vector

names(joe) <- c('age', 'height')
joe['age']

age
24
joe['height']

height
1.7

Referring to index by name rather than by position can make code
more readable, and flexible. Cannot do things like x[1:4] easily
though, since you need to name all four elements you want.
Note: in second use of names() above, we are actually using the
replacement function names <-, see later

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 44 / 97

Common functions for vectors

length()
rev()
sum(), cumsum(), prod(), cumprod()
mean(), sd(), var(), median()
min(), max(), range(), summary()
exp(), log(), sin(), cos(), tan() [radians, not degrees]
round(), ceil(), floor(), signif()
sort(), order(), rank()
which(), which.max()
any(), all()

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 45 / 97

Common functions for vectors
Functions can be called within function calls; the following are
equivalent:
x <- c(3, 2, 9, 4)
(y <- exp(x))

[1] 20.085537 7.389056 8103.083928
[4] 54.598150
(z1 <- which(y > 20)) ## case 1

[1] 1 3 4
(z2 <- which (exp(x) > 20)) ## case 2

[1] 1 3 4
all.equal(z1, z2)

[1] TRUE

Modified from original slide by Eglen (2009).Daniel E. Weeks R basics 46 / 97

Classes

Need to be aware of the class of the vector
(x <- c(3, 2))

[1] 3 2
class(x)

[1] "numeric"
(y <- c(1, 'dog'))

[1] "1" "dog"
class(y)

[1] "character"

Daniel E. Weeks R basics 47 / 97

Classes

The class of a combined vector may differ from that of its parts. All
elements of a vector are of the same type.
(z <- c(4,TRUE))

[1] 4 1
class(z)

[1] "numeric"
(tg <- c(x,y,z))

[1] "3" "2" "1" "dog" "4" "1"
class(tg)

[1] "character"

Daniel E. Weeks R basics 48 / 97

Coercion

If you construct a vector with mixed data types, all elements will be
coerced to the most flexible type. From least to most flexible:
logical, integer, numeric, and character
class(c(TRUE, FALSE, 1L))

[1] "integer"
class(c(1L, 2.3))

[1] "numeric"
class(c(1L, 2.3, "A"))

[1] "character"

Daniel E. Weeks R basics 49 / 97

Names

Can be useful to assign names to the vector elements
(z <- c(4,5,1))

[1] 4 5 1
names(z) <- c('four','five','one')
z

four five one
4 5 1
(x <- c(four=4,five=5,one=1))

four five one
4 5 1

Daniel E. Weeks R basics 50 / 97

Questions

When vectors are used in a mathematical expression, how are
the operations performed?
How would you remove the third element of a vector of length
10?
How would you find all elements of a numerical vector that are
greater than 2?

Daniel E. Weeks R basics 51 / 97

Answers

When vectors are used in a mathematical expression, the
operations are applied to each element, one by one.
To remove third element of a vector x of length 10, do this:
x[-3]
To list all elements of a numerical vector that are greater than
2, do this: x[x>2]

Daniel E. Weeks R basics 52 / 97

Question

What are the three ways to select elements?

Daniel E. Weeks R basics 53 / 97

Answer
1 numerical index
2 logical index
3 names

x <- c(A="a",B="b") # Create a named vector
x[2]

B
"b"
x[c(TRUE, FALSE)]

A
"a"
x["B"]

B
"b"

Daniel E. Weeks R basics 54 / 97

Part I: Important points

Programming is breaking a large task into bite-size steps.
R objects are created using the assignment operator <-
Function behavior can be changed by using different values for
their arguments.
R objects can be examined with class and str commands.
Vectors are used a lot in R.
There are three different ways to select elements from a vector.
With vectors, be careful about coercion to characters and
recycling.
All elements of a vector are of the same type.

Daniel E. Weeks R basics 55 / 97

Data structures in R

Homogeneous - contains all the same type of data
vectors (1 dimension)
matrices (2 dimensions)
arrays (n dimensions)
factors

Heterogeneous - can contain mixtures of data
lists
data frame

tibbles

Daniel E. Weeks R basics 56 / 97

Matrices

A matrix is just a vector with some additional mark-up to reformat
it. Matrix stored in column-major order (like Fortran, unlike C).
x <- 1:6
is.matrix(x)

[1] FALSE
dim(x) <- c(2,3)
is.matrix(x)

[1] TRUE
x

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Daniel E. Weeks R basics 57 / 97

Matrices

x

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
class(x)

[1] "matrix" "array"
dim(x)

[1] 2 3

Daniel E. Weeks R basics 58 / 97

Matrices
x

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
x[2,2]

[1] 4
x[1,] ## extracting values.

[1] 1 3 5
x[1:2, 2:3]

[,1] [,2]
[1,] 3 5
[2,] 4 6

Modified from original slide by Eglen (2009).
Daniel E. Weeks R basics 59 / 97

Matrices
x

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
x[,2] ## not column vector!

[1] 3 4
x[,2,drop=F] ## gotcha!

[,1]
[1,] 3
[2,] 4

Note that everything in a matrix is of the same type.

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 60 / 97

Typical matrix construction methods
matrix()
cbind() or bind_cols()
rbind() or bind_rows()

(m <- matrix(floor(runif(6, max=50)), nrow=3)) ##ncol=2

[,1] [,2]
[1,] 38 18
[2,] 15 22
[3,] 49 42
(x <- rbind(c(1,4,9), c(2,6,8), c(3,2,1)))

[,1] [,2] [,3]
[1,] 1 4 9
[2,] 2 6 8
[3,] 3 2 1

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 61 / 97

Typical matrix construction methods

Recycling:
(y <- cbind(c(1,2,3), 5, c(4,5,6))) # recycling again

[,1] [,2] [,3]
[1,] 1 5 4
[2,] 2 5 5
[3,] 3 5 6

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 62 / 97

Typical matrix construction methods

Note that matrix indices can also be named:
dimnames(m) <- list(student=c('ann', 'bob', 'joe'),

exam=c('math', 'french'))
m

exam
student math french
ann 38 18
bob 15 22
joe 49 42
m['bob',] ## get bob's scores

math french
15 22

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 63 / 97

Common matrix operations
diagonal: diag(x) ## watch if x matrix or scalar.
matrix multiplication: %*% vs * (element-wise)

(x <- matrix(1:4, 2,2))

[,1] [,2]
[1,] 1 3
[2,] 2 4
(i <- diag(2)) ## 2x2 identity matrix x

[,1] [,2]
[1,] 1 0
[2,] 0 1
x * i ## not x!

[,1] [,2]
[1,] 1 0
[2,] 0 4

Modified from original slide by Eglen (2009).
Daniel E. Weeks R basics 64 / 97

Common matrix operations
matrix multiplication: %*% vs * (element-wise)

x

[,1] [,2]
[1,] 1 3
[2,] 2 4
x * i # not x!

[,1] [,2]
[1,] 1 0
[2,] 0 4
x %*% i # Matrix multiplication

[,1] [,2]
[1,] 1 3
[2,] 2 4

Modified from original slide by Eglen (2009).
Daniel E. Weeks R basics 65 / 97

Common matrix operations

transpose: t(x)
dim, nrow, ncol
inverse: solve(x), x %*% solve(x) == diag(nrow(x))
Arrays as extension of matrices to multiple dimensions.

x <- array(1:12, c(2,2,3)).

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 66 / 97

Question

What would happen if we issued this R command:
matrix(c(1,2,"a","b"),nrow=2)?

Daniel E. Weeks R basics 67 / 97

Answer

If we issued this R command:
matrix(c(1,2,"a","b"),nrow=2), all the elements would
be converted to characters.

matrix(c(1,2,"a","b"),nrow=2)

[,1] [,2]
[1,] "1" "a"
[2,] "2" "b"

Daniel E. Weeks R basics 68 / 97

Question

What is x[,2]?
x <- 1:6; dim(x) <- c(2,3); x

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Daniel E. Weeks R basics 69 / 97

Answer

What is x[,2]?
x[,2] # not column vector!

[1] 3 4
x[,2, drop = FALSE] # A column vector

[,1]
[1,] 3
[2,] 4

Daniel E. Weeks R basics 70 / 97

Data structures in R

Homogeneous - contains all the same type of data
vectors (1 dimension)
matrices (2 dimensions)
arrays (n dimensions)
factors

Heterogeneous - can contain mixtures of data
lists
data frame

tibbles

Daniel E. Weeks R basics 71 / 97

What is a list?

A list is used to collect a group of objects of different sizes and types.
Very flexible. Often returned as the result of a complex function
(e.g. model fit) to return all relevant information in one object.
l <- list(id='joe', height=1.70, dob=c(1960, 12, 1))
l

$id
[1] "joe"
##
$height
[1] 1.7
##
$dob
[1] 1960 12 1

Daniel E. Weeks R basics 72 / 97

What is a list?

length(l)

[1] 3
names(l) ## show components

[1] "id" "height" "dob"
l$height ## access an element.

[1] 1.7
unlist(l) ## compact way of viewing it.

id height dob1 dob2 dob3
"joe" "1.7" "1960" "12" "1"

Daniel E. Weeks R basics 73 / 97

What is a list?

Different components of a list can have different modes
List elements can either be accessed

by name (e.g. l$height)
by position (l[[2]]).

When using numbers to index list, compare l[2] (a list with one
element) with l[[2]]. You can therefore do l[2:3] but not l[[2:3]].

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 74 / 97

What is a list?

unlist(l)

id height dob1 dob2 dob3
"joe" "1.7" "1960" "12" "1"
l[1]

$id
[1] "joe"
l[[1]]

[1] "joe"

Daniel E. Weeks R basics 75 / 97

What is a list?

unlist(l)

id height dob1 dob2 dob3
"joe" "1.7" "1960" "12" "1"
str(l[1])

List of 1
$ id: chr "joe"
str(l[[1]])

chr "joe"

Daniel E. Weeks R basics 76 / 97

What is a list?

The summary function will provide information about the top-level
elements of a list:
unlist(l)

id height dob1 dob2 dob3
"joe" "1.7" "1960" "12" "1"
summary(l)

Length Class Mode
id 1 -none- character
height 1 -none- numeric
dob 3 -none- numeric

Daniel E. Weeks R basics 77 / 97

Modifying lists

We can append new items to list either by making a new list from
the old one (Ex1) , or directly by assigning new element (Ex2):
unlist(l1 <- list(who='fred'))

who
"fred"
l1 <- c(l1, height=1.8) ## Ex1
unlist(l1)

who height
"fred" "1.8"
l1[['dob']] <- c(1965, 10, 17) ## Ex2
unlist(l1)

who height dob1 dob2 dob3
"fred" "1.8" "1965" "10" "17"

Daniel E. Weeks R basics 78 / 97

Modifying lists

Deleting list items:
l1['height'] <- NULL
unlist(l1)

who dob1 dob2 dob3
"fred" "1965" "10" "17"

Daniel E. Weeks R basics 79 / 97

Modifying lists
Finally, for completeness, here is a way to predefine a list of given
length and gradually fill it in:
empty <- vector('list', 3) ## Prealloc to given length.
names(empty) <- c('who', 'height', 'dob')
empty[['height']] <- 1.8
empty

$who
NULL
##
$height
[1] 1.8
##
$dob
NULL

Modified from original slide by Eglen (2009).

Daniel E. Weeks R basics 80 / 97

Question

Describe differences between a list and a vector.

Daniel E. Weeks R basics 81 / 97

Answer

A list generalizes a vector, as a list’s elements can be of different
types and dimensions.

Daniel E. Weeks R basics 82 / 97

Data structures in R

Homogeneous - contains all the same type of data
vectors (1 dimension)
matrices (2 dimensions)
arrays (n dimensions)
factors

Heterogeneous - can contain mixtures of data
lists
data frames

tibbles

Daniel E. Weeks R basics 83 / 97

Data frames

A data frame stores a table of data
Each column can have a different mode (unlike a matrix)
Each column must be the same length (less flexible than a list)
Often created using read.table() or read.csv() to read in tabular
data

Be careful about conversion to factors
Be careful about coercion of numerical to character

Daniel E. Weeks R basics 84 / 97

Data frames

a <- c(1:3)
b <- c('A','B','C')
(d <- data.frame(a,b))

a b
1 1 A
2 2 B
3 3 C
dim(d)

[1] 3 2
str(d)

'data.frame': 3 obs. of 2 variables:
$ a: int 1 2 3
$ b: chr "A" "B" "C"

Daniel E. Weeks R basics 85 / 97

str command

The str command compactly displays the internal structure of an R
object
str(d)

'data.frame': 3 obs. of 2 variables:
$ a: int 1 2 3
$ b: chr "A" "B" "C"

A similar useful command is the glimpse command from the
tidyverse.

Daniel E. Weeks R basics 86 / 97

Data frames: select rows and columns
names(d)

[1] "a" "b"
names(d) <-c('ID','Grade')
d

ID Grade
1 1 A
2 2 B
3 3 C
d[2,] # Row two

ID Grade
2 2 B
d[,1] # Column one

[1] 1 2 3
Daniel E. Weeks R basics 87 / 97

Data frames

Compare how a data frame and a list are printed:
d

ID Grade
1 1 A
2 2 B
3 3 C
f <- list(ID=a,Grade=b)
f

$ID
[1] 1 2 3
##
$Grade
[1] "A" "B" "C"

Daniel E. Weeks R basics 88 / 97

Data frames

To pull a column out of a data fame, you can use the $ operator
followed by the name of the desired column:
d$ID

[1] 1 2 3
d$Grade

[1] "A" "B" "C"

Daniel E. Weeks R basics 89 / 97

Data frames: create a new column

d

ID Grade
1 1 A
2 2 B
3 3 C
d$Name <- c("Bob","Jane","Dan")
d

ID Grade Name
1 1 A Bob
2 2 B Jane
3 3 C Dan

Daniel E. Weeks R basics 90 / 97

Tibbles

Tibbles are an extension of data frames
Tibbles typically consist of named lists of vectors, all of the
same length.
Tibbles can also contain list columns

A list column’s elements can be lists or tibbles.
Nested data

Daniel E. Weeks R basics 91 / 97

Questions

Describe differences between a data frame and a matrix.
Describe differences between a data frame and a list.

Daniel E. Weeks R basics 92 / 97

Answers

All elements of a matrix must be of the same type, while each
column of a data frame can be its own type.
A data frame is a list, with the restriction that every element of
the list is of the same length.

Daniel E. Weeks R basics 93 / 97

Data structures in R

Homogeneous - contains all the same type of data
vectors (1 dimension)
matrices (2 dimensions)
arrays (n dimensions)
factors

Heterogeneous - can contain mixtures of data
lists
data frames

tibbles

Daniel E. Weeks R basics 94 / 97

How to get help

If you know the command, then use the question mark
?data.frame

If you don’t know the command, try help.search()
help.search(“data frame”)

Google search appended with ‘in R’
data.frame in R

https://stackoverflow.com
Search with the tag [r]

Other R search engines/links
http://lib.stat.cmu.edu/R/CRAN/search.html

Daniel E. Weeks R basics 95 / 97

https://stackoverflow.com
http://lib.stat.cmu.edu/R/CRAN/search.html

R Basics Group Exercise

Please try out the R Basics Group Exercise in our online
HuGen2071 book:

https://danieleweeks.github.io/HuGen2071/Rbasics.html

Daniel E. Weeks R basics 96 / 97

https://danieleweeks.github.io/HuGen2071/Rbasics.html

The End

What questions do you have?

Daniel E. Weeks R basics 97 / 97

